Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(10): 2228-2235, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38441478

RESUMO

Raman optical activity (ROA) is a chiral sensitive technique to measure the difference in Raman scattering intensity between right and left circularly polarized light. The method has been applied to the study of biological molecules such as proteins, and it is now recognized as a powerful tool for investigating biomolecular structures. We have expanded the capability of this chiroptical technique to colored molecules, such as photoreceptor proteins, by using a near-infrared excitation. A photoreceptor protein contains a light-absorbing chromophore as an active site, and the precise determination of its structure is vital for comprehending the protein's function at the atomic level. In a photoreceptor protein, the protein environment can distort an achiral chromophore into a chiral conformation. ROA spectroscopy offers detailed structural information about the chromophore under physiological conditions. Here we explore recent progress in near-infrared ROA spectroscopy and its application to biological systems.


Assuntos
Proteínas , Análise Espectral Raman , Rotação Ocular , Domínio Catalítico , Proteínas/química , Análise Espectral Raman/métodos
2.
J Phys Chem Lett ; 15(7): 1993-1998, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349321

RESUMO

Microbial rhodopsins are photoreceptors containing the retinal Schiff base chromophore and are ubiquitous among microorganisms. The Schiff base configuration of the chromophore, 15-anti (C═N trans) or 15-syn (C═N cis), is structurally important for their functions, such as membrane ion transport, because this configuration dictates the orientation of the positively charged NH group that interacts with substrate ions. The 15-anti/syn configuration is thus essential for elucidating the ion-transport mechanisms in microbial rhodopsins. Here, we identified the Schiff base configuration during the photoreaction of a sodium pumping rhodopsin from Indibacter alkaliphilus using Raman spectroscopy. We found that the unique configurational change from the 13-cis, 15-anti to all-trans, 15-syn form occurs between the photointermediates termed O1 and O2, which accomplish the Na+ uptake and release, respectively. This isomerization is considered to give rise to the highly irreversible O1 → O2 step that is crucial for unidirectional Na+ transport.


Assuntos
Rodopsina , Bases de Schiff , Rodopsina/química , Bases de Schiff/química , Íons , Transporte de Íons , Rodopsinas Microbianas , Sódio/química
3.
Adv Sci (Weinh) ; 11(1): e2305521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985561

RESUMO

Raman optical activity (ROA) is commonly measured with green light (532 nm) excitation. At this wavelength, however, Raman scattering of europium complexes is masked by circularly polarized luminescence (CPL). This can be avoided using near-infrared (near-IR, 785 nm) laser excitation, as demonstrated here by Raman and ROA spectra of three chiral europium complexes derived from camphor. Since luminescence is strongly suppressed, many vibrational bands can be detected. They carry a wealth of structural information about the ligand and the metal core, and can be interpreted based on density functional theory (DFT) simulations of the spectra. For example, jointly with ROA experimental data, the simulations make it possible to determine absolute configuration of chiral lanthanide compounds in solution.

4.
J Phys Chem Lett ; 14(41): 9304-9309, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816034

RESUMO

Out-of-plane distortions of a cofactor molecule in a protein active site are functionally important, and in photoreceptors, it has been proposed that they are crucial for spectral tuning and energy storage in photocycle intermediates. However, these subtle structural features are often beyond the grasp of structural biology. This issue is strikingly exemplified by photoactive yellow protein: its 14 independently determined crystal structures exhibit considerable differences in the dihedral angles defining the chromophore geometry, even though most of these are at excellent resolution. Here we developed a strategy to verify cofactor distortions in crystal structures by using quantum chemical calculations and chiroptical spectroscopy, particularly Raman optical activity and electronic circular dichroism spectroscopies. Based on this approach, we identify seven crystal structures with the chromophore geometries inconsistent with the experimentally observed data. The strategy implemented here promises to be widely applicable to uncovering cofactor distortions at active sites and to studies of reaction intermediates.


Assuntos
Fotorreceptores Microbianos , Análise Espectral Raman , Domínio Catalítico , Análise Espectral Raman/métodos , Proteínas de Bactérias/química , Cristalografia , Espectrofotometria Ultravioleta , Fotorreceptores Microbianos/química
5.
J Phys Chem B ; 127(33): 7244-7250, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556781

RESUMO

Raman optical activity (ROA) spectroscopy was used to study the conformation of the retinal chromophore in sensory rhodopsin II (SRII), which is a blue-green light sensor of microbes. The ROA spectrum consisted of the negative vibrational bands of the chromophore, whose relative intensities are similar to those of the parent Raman spectrum. This spectral feature was explained by the left-handed helical twist of the retinal chromophore on the basis of quantum chemical calculations. On the other hand, we found that the chromophore conformation based on the crystal structures of SRII has a right-handed helical twist, which does not agree with the observation. This specific result suggests that the consistency with chiro-optical properties can be a key criterion for the accurate prediction and/or evaluation of chromophore conformation in retinal-binding proteins.


Assuntos
Rodopsinas Sensoriais , Rodopsinas Sensoriais/química , Rotação Ocular , Retina , Análise Espectral Raman , Rodopsina/química
6.
J Phys Chem B ; 127(21): 4775-4782, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201188

RESUMO

Chloride transport by microbial rhodopsins is actively being researched to understand how light energy is converted to drive ion pumping across cell membranes. Chloride pumps have been identified in archaea and eubacteria, and there are similarities and differences in the active site structures between these groups. Thus, it has not been clarified whether a common mechanism underlies the ion pump processes for all chloride-pumping rhodopsins. Here, we applied Raman optical activity (ROA) spectroscopy to two chloride pumps, Nonlabens marinus rhodopsin-3 (NM-R3) and halorhodopsin from the cyanobacterium Mastigocladopsis repens (MrHR). ROA is a vibrational spectroscopy that provides chiral sensitivity, and the sign of ROA signals can reveal twisting of cofactor molecules within proteins. Our ROA analysis revealed that the retinal Schiff base NH group orients toward the C helix and forms a direct hydrogen bond with a nearby chloride ion in NM-R3. In contrast, MrHR is suggested to contain two retinal conformations twisted in opposite directions; one conformation has a hydrogen bond with a chloride ion like NM-R3, while the other forms a hydrogen bond with a water molecule anchored by a G helix residue. These results suggest a general pump mechanism in which the chloride ion is "dragged" by the flipping Schiff base NH group upon photoisomerization.


Assuntos
Cloretos , Rodopsina , Rodopsina/química , Cloretos/química , Bases de Schiff , Rotação Ocular , Rodopsinas Microbianas/metabolismo , Bombas de Íon , Luz
7.
J Biol Chem ; 298(9): 102366, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963435

RESUMO

Sodium-pumping rhodopsins (NaRs) are membrane transporters that utilize light energy to pump Na+ across the cellular membrane. Within the NaRs, the retinal Schiff base chromophore absorbs light, and a photochemically induced transient state, referred to as the "O intermediate", performs both the uptake and release of Na+. However, the structure of the O intermediate remains unclear. Here, we used time-resolved cryo-Raman spectroscopy under preresonance conditions to study the structure of the retinal chromophore in the O intermediate of an NaR from the bacterium Indibacter alkaliphilus. We observed two O intermediates, termed O1 and O2, having distinct chromophore structures. We show O1 displays a distorted 13-cis chromophore, while O2 contains a distorted all-trans structure. This finding indicated that the uptake and release of Na+ are achieved not by a single O intermediate but by two sequential O intermediates that are toggled via isomerization of the retinal chromophore. These results provide crucial structural insight into the unidirectional Na+ transport mediated by the chromophore-binding pocket of NaRs.


Assuntos
Bacteriorodopsinas , Bacteroidetes , Sódio , Bacteriorodopsinas/metabolismo , Bacteroidetes/metabolismo , Transporte de Íons , Luz , Bases de Schiff , Sódio/metabolismo , Análise Espectral Raman
8.
J Phys Chem B ; 126(4): 813-821, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35076228

RESUMO

Cyanobacteriochromes (CBCRs) belong to the phytochrome superfamily of photoreceptors, the members of which utilize a linear tetrapyrrole (bilin) as a chromophore. RcaE is a representative member of a green/red-type CBCR subfamily that photoconverts between a green-absorbing dark state and red-absorbing photoproduct (Pr). Our recent crystallographic study showed that the phycocyanobilin (PCB) chromophore of RcaE adopts a unique C15-E,syn configuration in the Pr state, unlike the typical C15-E,anti configuration for the phytochromes and other CBCRs. Here, we measured Raman spectra of the Pr state of RcaE with 1064 nm excitation and explored the structure of PCB and its interacting residues under physiologically relevant aqueous conditions. We also performed measurements of RcaE in D2O as well as the sample reconstituted with the PCB labeled with 15N or with both 13C and 15N. The observed Raman spectra were analyzed by quantum mechanics/molecular mechanics (QM/MM) calculations together with molecular dynamics simulations. The Raman spectra and their isotope effects were well-reproduced by the simulated spectra of fully protonated PCB with the C15-E,syn configuration and allowed us to assign most of the observed bands. The present vibrational analysis of the all syn bilin chromophore using the QM/MM method will advance future studies on CBCRs and the related proteins by vibrational spectroscopy.


Assuntos
Fotorreceptores Microbianos , Fitocromo , Proteínas de Bactérias/química , Pigmentos Biliares/química , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos/química , Fitocromo/química , Análise Espectral Raman
9.
J Phys Chem Lett ; 12(39): 9564-9568, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34581580

RESUMO

Raman optical activity (ROA) spectroscopy was used to study the conformation of the retinal Schiff base chromophore in green-light-absorbing proteorhodopsin, which is a globally distributed light-driven proton pump of aquatic bacteria. The ROA spectrum consisted mostly of the negative vibrational bands of the chromophore, while the hydrogen out-of-plane mode (at 960 cm-1) appeared as the sole positive band. This distinct spectral feature was not explained by the twisted structure of the retinal Schiff base but was reproduced by the structural model in which the polyene chain on the ß-ionone ring side was bent out-of-plane. The bent chromophore structure potentially couples with proton pumping through the motion of the sixth helix in contact with the ß-ionone ring.

11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972439

RESUMO

Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKa, whereas they are directly hydrogen bonded in the ß-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.


Assuntos
Proteínas de Bactérias/química , Pigmentos Biliares/química , Complexos de Proteínas Captadores de Luz/química , Fotorreceptores Microbianos/química , Fitocromo/química , Prótons , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pigmentos Biliares/genética , Pigmentos Biliares/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Cianobactérias/química , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pirróis/química , Pirróis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
ACS Omega ; 6(11): 7829-7833, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778294

RESUMO

Raman spectroscopy is a powerful technique for a wide range of materials, including porcelain, and near-infrared excitation is often used to suppress a fluorescence background from a sample. When we measured the Raman spectra of porcelains at 785 nm excitation, we observed a strong broad band in a high-frequency region, and its origin was not clearly elucidated. In this study, we have measured the spectra of glazed porcelains at 532, 785, and 1064 nm excitation and demonstrated that the broad feature originates from luminescence around 880 nm and not from Raman scattering. We provide experimental evidence showing that the band originates from a thin layer of glaze. Since the band shape depends on the processing temperature, the luminescence spectra can be a nondestructive probe for studying the glass formation of a glaze.

13.
Phys Chem Chem Phys ; 23(3): 2072-2079, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33433533

RESUMO

We carried out the low-temperature Raman measurement of a sodium pump rhodopsin from Indibacter alkaliphilus (IaNaR) and examined the primary structural change for the light-driven Na+ pump. We observed that photoexcitation of IaNaR produced the distorted 13-cis retinal chromophore in the presence of Na+, while the structural distortion was significantly relaxed in the absence of Na+. This structural difference of the chromophore with/without Na+ was attributed to the Na+ binding to the protein, which alters the active site. Using the spectral sensitivity to the ion binding, we found that IaNaR had a second Na+ binding site in addition to the one already specified on the extracellular surface. To date, the Na+ binding has not been considered as a prerequisite for Na+ transport. However, this study provides insight that the protein structural change induced by the ion binding involved the formation of an R108-D250 salt bridge, which has critical importance in the active transport of Na+.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/química , Proteínas de Transporte de Cátions/metabolismo , Rodopsinas Microbianas/metabolismo , Sódio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Transporte Biológico Ativo , Domínio Catalítico , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/efeitos da radiação , Temperatura Baixa , Cristalografia por Raios X , Diterpenos/química , Conformação Molecular , Mutação , Retinaldeído/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/efeitos da radiação , Análise Espectral Raman
14.
J Phys Chem Lett ; 11(20): 8579-8584, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32945678

RESUMO

Light-absorbing chromophores in photoreceptors contain a π-electron system and are intrinsically planar molecules. However, within a protein environment these cofactors often become nonplanar and chiral in a manner that is widely believed to be functionally important. When the same chromophore is out-of-plane distorted in opposite directions in different members of a protein family, such conformers become a set of enantiomers. In techniques using chiral optical spectroscopy such as Raman optical activity (ROA), such proteins are expected to show opposite signs in their spectra. Here we use two microbial rhodopsins, Gloeobacter rhodopsin and sodium ion pump rhodopsin (NaR), to provide the first experimental and theoretical evidence that the twist direction of the retinal chromophore indeed determines the sign of the ROA spectrum. We disrupt the hydrogen bond responsible for the distortion of the retinal in NaR and show that the sign of the ROA signals of this nonfunctional mutant is flipped. The reported ROA spectra are monosignate, a property that has been seen for a variety of photoreceptors, which we attribute to an energetically favorable gradual curvature of the chromophore.


Assuntos
Rodopsinas Microbianas/química , Análise Espectral Raman/métodos , Bacteroidetes/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Mutação , Estereoisomerismo , Termodinâmica
16.
J Biol Chem ; 294(49): 18909-18922, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31649035

RESUMO

Cyanobacteriochromes (CBCRs) are phytochrome-related photosensors with diverse spectral sensitivities spanning the entire visible spectrum. They covalently bind bilin chromophores via conserved cysteine residues and undergo 15Z/15E bilin photoisomerization upon light illumination. CBCR subfamilies absorbing violet-blue light use an additional cysteine residue to form a second bilin-thiol adduct in a two-Cys photocycle. However, the process of second thiol adduct formation is incompletely understood, especially the involvement of the bilin protonation state. Here, we focused on the Oscil6304_2705 protein from the cyanobacterium Oscillatoria acuminata PCC 6304, which photoconverts between a blue-absorbing 15Z state ( 15Z Pb) and orange-absorbing 15E state ( 15E Po). pH titration analysis revealed that 15Z Pb was stable over a wide pH range, suggesting that bilin protonation is stabilized by a second thiol adduct. As revealed by resonance Raman spectroscopy, 15E Po harbored protonated bilin at both acidic and neutral pH, but readily converted to a deprotonated green-absorbing 15Z state ( 15Z Pg) at alkaline pH. Site-directed mutagenesis revealed that the conserved Asp-71 and His-102 residues are required for second thiol adduct formation in 15Z Pb and bilin protonation in 15E Po, respectively. An Oscil6304_2705 variant lacking the second cysteine residue, Cys-73, photoconverted between deprotonated 15Z Pg and protonated 15E Pr, similarly to the protochromic photocycle of the green/red CBCR subfamily. Time-resolved spectroscopy revealed 15Z Pg formation as an intermediate in the 15E Pr-to- 15Z Pg conversion with a significant solvent-isotope effect, suggesting the sequential occurrence of 15EP-to-15Z photoisomerization, deprotonation, and second thiol adduct formation. Our findings uncover the details of protochromic absorption changes underlying the two-Cys photocycle of violet-blue-absorbing CBCR subfamilies.


Assuntos
Cisteína/metabolismo , Fitocromo/metabolismo , Pigmentos Biliares/metabolismo , Concentração de Íons de Hidrogênio , Oscillatoria/metabolismo
17.
Biochemistry ; 58(40): 4159-4167, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31538771

RESUMO

From the low-temperature absorption and Raman measurements of halorhodopsin from Natronomonas pharaonis (pHR), we observed that the two photoproducts were generated after exciting pHR at 80 K by green light. One photoproduct was the red-shifted K intermediate (pHRK) as the primary photointermediate for Cl- pumping, and the other was the blue-shifted one (pHRhypso), which was not involved in the Cl- pumping and thermally relaxed to the original unphotolyzed state by increasing temperature. The formation of these two kinds of photoproducts was previously reported for halorhodopsin from Halobacterium sarinarum [ Zimanyi et al. Biochemistry 1989 , 28 , 1656 ]. We found that the same took place in pHR, and we revealed the chromophore structures of the two photointermediates from their Raman spectra for the first time. pHRhypso had the distorted all-trans chromophore, while pHRK contained the distorted 13-cis form. The present results revealed that the structural analyses of pHRK carried out so far at ∼80 K potentially included a significant contribution from pHRhypso. pHRhypso was efficiently formed via the photoexcitation of pHRK, indicating that pHRhypso was likely a side product after photoexcitation of pHRK. The formation of pHRhypso suggested that the active site became tight in pHRK due to the slight movement of Cl-, and the back photoisomerization then produced the distorted all-trans chromophore in pHRhypso.


Assuntos
Halobacteriaceae/química , Halorrodopsinas/química , Halorrodopsinas/efeitos da radiação , Domínio Catalítico/efeitos da radiação , Temperatura Baixa , Ligação de Hidrogênio , Luz , Conformação Molecular , Retinaldeído/química , Bases de Schiff/química , Análise Espectral Raman
18.
Sci Rep ; 9(1): 10711, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341208

RESUMO

Many microbial rhodopsins self-oligomerize, but the functional consequences of oligomerization have not been well clarified. We examined the effects of oligomerization of a H+ pump, Gloeobacter rhodopsin (GR), by using nanodisc containing trimeric and monomeric GR. The monomerization did not appear to affect the unphotolyzed GR. However, we found a significant impact on the photoreaction: The monomeric GR showed faint M intermediate formation and negligible H+ transfer reactions. These changes reflected the elevated pKa of the Asp121 residue, whose deprotonation is a prerequisite for the functional photoreaction. Here, we focused on His87, which is a neighboring residue of Asp121 and conserved among eubacterial H+ pumps but replaced by Met in an archaeal H+ pump. We found that the H87M mutation removes the "monomerization effects": Even in the monomeric state, H87M contained the deprotonated Asp121 and showed both M formation and distinct H+ transfer reactions. Thus, for wild-type GR, monomerization probably strengthens the Asp121-His87 interaction and thereby elevates the pKa of Asp121 residue. This strong interaction might occur due to the loosened protein structure and/or the disruption of the interprotomer interaction of His87. Thus, the trimeric assembly of GR enables light-induced H+ transfer reactions through adjusting the positions of key residues.


Assuntos
Proteínas de Bactérias/química , Multimerização Proteica , Prótons , Rodopsina/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Histidina/química , Histidina/genética , Rodopsina/genética , Rodopsina/metabolismo
19.
J Phys Chem B ; 123(15): 3242-3247, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30913882

RESUMO

Phytochrome and cyanobacteriochrome utilize a linear methine-bridged tetrapyrrole (bilin) to control numerous biological processes. They show a reversible photoconversion between two spectrally distinct states. This photocycle is initiated by a C═C double-bond photoisomerization of the bilin followed by its thermal relaxations with transient and/or stationary changes in the protonation state of the pyrrole moiety. However, it has never been identified which of the four pyrrole nitrogen atoms is deprotonated. Here, we report a resonance Raman spectroscopic study on cyanobacteriochrome RcaE, which has been proposed to contain a deprotonated bilin for its green-absorbing 15 Z state. The observed Raman spectra were well reproduced by a simulated structure whose bilin B ring is deprotonated, with the aid of molecular dynamics and quantum mechanics/molecular mechanics calculations. The results revealed that the deprotonation of B and C rings has the distinct effect on the overall bilin structure, which will be relevant to the color tuning and photoconversion mechanisms of the phytochrome superfamily. Furthermore, this study documents the ability of vibrational spectroscopy combined with the advanced spectral analysis to visualize a proton of a cofactor molecule embedded in a protein moiety.


Assuntos
Pigmentos Biliares/química , Simulação de Dinâmica Molecular , Nitrogênio/química , Fotorreceptores Microbianos/química , Prótons , Pirróis/química , Teoria Quântica , Análise Espectral Raman , Cianobactérias
20.
J Am Chem Soc ; 140(38): 11982-11991, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30168326

RESUMO

Three kinds of photochemical reactions are known in flavins as chromophores of photosensor proteins, reflecting the various catalytic reactions of the flavin in flavoenzymes. Sensor of blue light using the flavin FAD (BLUF) domains exhibit a unique photoreaction compared with other flavin-binding photoreceptors in that the chromophore does not change its chemical structure between unphotolyzed and intermediate states. Rather, the hydrogen bonding environment is altered, whereby the conserved Gln and Tyr residues near FAD play a crucial role. One proposal for this behavior is that the conserved Gln changes its chemical structure from a keto to an enol. We applied light-induced difference Fourier transform infrared (FTIR) spectroscopy to AppA-BLUF. The spectra of AppA-BLUF exhibited a different feature upon 15N-Gln labeling compared with the previously reported spectra from BlrB, a different BLUF domain. The FTIR signals were interpreted from quantum mechanics/molecular mechanics (QM/MM) calculation as the keto-enol tautomerization and rotation of the Gln63 side chain in the AppA-BLUF domain. The former was consistent with the result from BlrB, but the latter was not uniquely determined by the previous study. QM/MM calculation also indicated that the infrared signal shape is influenced depending on whether a Trp side chain forms a hydrogen bond with the Gln side chain. FTIR spectra and QM/MM simulations concluded that Trp104 does not flip out but is maintained in the intermediate state. In contrast, our data revealed that the Trp residue at the corresponding position in BlrB faces outward in both states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...